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Summary

This thesis begins with a brief introduction to glia maturation factor-p (GMF), a
brain-specific protein, followed by a discussion of the physiological functions of GMF.
Next, the relation between GMF and chronic kidney disease (CKD) is introduced,
which will be referenced throughout this work. Briefly, GMF is ectopically induced in
renal tubules by CKD associated with proteinuria. GMF overexpression in non-brain
cells causes apoptosis in vitro via cellular vulnerability to oxidative stress. After that, the
pathological roles of GMF in the neurodegenerative diseases are introduced. In the
present study, we constructed transgenic mice overexpressing GMF (GMF-TG) and

investigated the roles of GMF in non-brain tissues in vivo.

Results of the research conducted during this study are presented in Chapter 2. We
evaluated the GMF-TG mice for 155 weeks and compared with the wild-type mice. The
GMF-TG mice prematurely exhibited aging-associated symptoms including a lack of
hair glossiness, hair graying, alopecia, skin atrophy, and curvature of the spine as seen
in normal human aging. The GMF-TG mice also demonstrated short lifespans and
reduced hair regrowth, suggesting an accelerated aging process.

The analysis of premature aging syndromes develops understanding of the molecular
basis of the physiological aging. The production of an abnormal lamin A, a nuclear
envelope protein, has been identified as the cause of accelerated aging diseases, known
as laminopathies, and might play a causal role in normal aging. Some phenotypes seen

in the GMF-TG mice, such as alopecia and skin atrophy were similar to those of



laminopathy-based premature aging. Here, we examined whether this accelerated aging
characteristics observed in the GMF-TG mice would be associated with laminopathies.
We identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of
a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The
GMF-TG mice showed accelerated aging in the kidney, compared with the wild-type
mice, showing the increased the transforming growth factor-B1 (TGF-$1) and
connective tissue growing factor (CTGF) gene expression and the decline of renal
function (e.g. increased serum creatinine). The mRNA expression of p21/wafl was
increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a
later stage, at 60 weeks. In this chapter, we demonstrated the GMF-TG mice showed
very mild accelerated aging phenotypes due to the abnormal lamin A, accompanied by

Zmpste24 down-regulation.

In chapter 3, we proposed a novel role of GMF overexpression in non-brain tissues
in vivo. This proposition suggests that the gene expression of Zmpste24 in the GMF-TG
mice might respond sensitively to oxidative stress, which may be associated with a
vulnerability to oxidative stress caused by GMF overexpression. The usefulness of the

GMF-TG mice will be presented.
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Chapter 1.

Introduction

1.1 Glia maturation factor-p

Glia maturation factor-B (GMF) was first detected in 1972 by Lim et al. as a
consequence of search for growth or differentiation factors in the nervous system [1-3].
GMF is a 17-kDa highly conserved 141-amino acid protein, with 99% homology
between humans and rodents [4]. It is localized in the cytoplasm of glial cells, mainly
astrocytes, and some neurons [4-6]. GMF has no leader sequence and is not secreted by
the cells [5]. GMF mRNA is predominantly expressed in the brain and spinal cord,

although trace levels are found in other organs, including testis and ovary (Figure 1) [6].

It has been reported by Lim et al. that recombinant GMF can be phosphorylated in
vitro at the serine residue by protein kinase C, protein kinase A, and casein kinase I,
and at the threonine residue by p90 ribosomal S6 kinase, indicating that GMF possesses
several consensus phosphorylation sites [5,7]. Protein kinase A-phosphorylated GMF
inhibits the activity of mitogen-activated protein kinases (MAPK), ERK1 and ERK2
(extracellular signal-regulated kinase 1 and 2, respectively) [8], while it promotes the
activity of p38-MAPK [9]. MAPK is an important signaling pathway regulating a
variety of physiological processes such as cell growth, proliferation, differentiation,
migration, and apoptosis [10]. The three major MAPK cascades; ERK cascade, c-Jun

amino-terminal protein kinase/stress-activated protein kinase (JNK/SAPK) cascade and



p38-MAPK cascade are well-known [10]. Lim et al. [5] and Zaheer et al. [11] have
demonstrated that overexpression of GMF in brain cells stimulates p38-MAPK activity
and activates the transcription factor nuclear factor-«B (NF-xB). Activation of NF-xB
plays a central role in the regulation of diverse cellular processes such as inflammation,
immune response, differentiation, proliferation and apoptosis [12]. GMF has been

currently described as an intracellular regulator of cell signal transduction.

GMF has also been identified as a member of the actin-depolymerizing factor
homology (ADF-H) family [13] which regulates actin filament dynamics at multiple
cellular locations [14]. Actin filament dynamics play important roles in fundamental
cellular processes, including cell motility, cell division, control of cell shape and

endocytosis [13,15].

1.2 Glia maturation factor-p and Chronic kidney disease

Previously Takenaka et al. [16] and Nakajima et al. [17] have shown that proteinuria
induces the ectopic expression of GMF, a brain specific protein, in renal proximal
tubular cells. Kaimori et al. [18] showed that GMF overexpression in non-brain cells led
to vulnerability to oxidative injury through p38-MAPK pathway and changes in
antioxidant enzyme activities in vitro (Figure 2). This function was confirmed by

evidence showing that GMF-null astrocytes increased resistance to oxidative stress [19].

Oxidative stress is broadly defined as an imbalance between reactive oxygen species
(ROS) production and the cellular antioxidant defense system (Figure 3) [20,21]. ROS
are produced in all mammalian cells, as a consequence of normal cellular metabolism

[20,22]. It is thought that oxidative stress causes damage to biomolecules such as



proteins, lipids and DNA, resulting in cellular damage and aging (Figure 3) [21,23,24].

Chronic kidney disease (CKD) is defined as abnormalities of kidney structure and/or
function, present for a period of three months or more (Table 1) [25]. Chronic
proteinuria is not only a sign of CKD, it also plays an important role in the progression
of CKD [26]. It is known that oxidative stress is elevated in patients with CKD [27,28].
Taken together, it suggests that the induction of GMF in renal proximal tubular cells by
proteinuria might play a key role in the pathogenesis of CKD by enhancing oxidative
injuries [18]. It is likely that GMF has the pathological functions as well as the

physiological functions.

1.3 Glia maturation factor-f and Neurodegenerative disease

Recent studies had shown that GMF was up-regulated in the specific areas of
Alzheimer's disease brain [29-31]. It is considered that inflammatory response of glial
cells is closely intertwined with pathogenesis of neurodegenerative diseases, such as
Alzheimer's disease, Parkinson's disease and Multiple sclerosis [32-36]. It has been
reported that GMF induces granulocyte-macrophage colony-stimulating factor
(GM-CSF) and interleukin-33 (IL-33) in astrocytes [4,34,35,37]. GMF also was
associated with the proinflammatory cytokine/chemokine production, including tumor
necrosis factor-o. (TNF-a), interleukin-1p (IL-1p), interleukin-6 (IL-6), and interferon
gamma-induced protein 10 (IP-10) in microglia [4,32-38]. It suggests that GMF
overexpression in brain tissue acts as a prominent mediator of inflammatory signal
transduction in the central nervous system, leading to the death of neurons in the

neurodegenerative diseases (Figure 4) [4,32-38].



1.4 Focus of this thesis

Several previous studies have shown the physiological [1-8,11] and
pathophysiological [4,29-38] roles of the expression of GMF in the brain tissue.
However, as far as we know, the roles of GMF in the non-brain tissues have not been
fully clarified. Thus the aim of the present study was to investigate the roles of GMF

overexpression in non-brain tissues.



Chapter 2.

Transgenic mice overexpressing GMF, an
oxidative stress inducible gene, show premature

aging due to Zmpste24 down-regulation

The thesis is prepared based on the quotations from our article published in Aging.

This has been already approved by the publisher.



2.1 Introduction

The nuclear lamina is a filamentous protein meshwork underlying the inner nuclear
membrane [39,40]. It plays important roles in maintaining the nuclear envelope and
providing anchorage sites for chromatin [40,41]. It has been recognized that the nuclear
lamina is also involved in various functions at the cellular level, including DNA
replication, transcription, and apoptosis [41-43]. The major components of the nuclear
lamina are intermediate filament proteins, the A- and B-type lamins [40,42]. The A-type
lamins, such as lamin A and C, arise from the single gene (LMNA gene) by alternative
splicing of the transcript [40,41]. Lamin A is derived from its precursor prelamin A,
through a multi-step maturation process [39]. Zinc-metalloprotease, Zmpste24 is an
enzyme required for the correct processing and maturation of lamin A [39]. The B-type
lamins, such as lamin B1 and B2, are encoded by separate genes (LMNB1 and LMNB2)
[41].

Mutations in the gene coding the nuclear lamina components cause a wide variety of
diseases known as laminopathies [42]. For example, Hutchinson-Gilford progeria
syndrome (HGPS) [44] and restrictive dermopathy [45] are rare genetic accelerated
aging diseases caused by mutations of the LMNA or ZMPSTE24 gene. These mutations
produce mutant lamin A proteins, such as progerin or prelamin A, respectively [42],
which can cause disassembly of the nuclear envelope proteins, subsequently
accompanied by accelerated aging due to laminopathies [42]. Laminopathies caused by
the alteration of the lamin A protein and their assembly can be further classified into the
primary and secondary laminopathies [42]. The primary laminopathies are due to

mutations in the LMNA gene and the secondary laminopathies are caused by mutations



in the ZMPSTE24 gene [42]. Laminopathies exhibit clinical features mimicking
physiological aging, including sclerotic skin, joint contractures, bone abnormalities, and
alopecia, but the clinical features of laminopathies are radical [42,44,45]. Interestingly,
the abnormalities associated with lamin A are normally observed in healthy human
aging, suggesting that the accumulation of abnormal lamin A protein is associated with
organismal physiological aging [46-49].

In the present study, the first step was to construct transgenic mice overexpressing
GMF (GMF-TG) in order to examine the roles of GMF in non-brain tissues in vivo.
During the breeding period, we found that the GMF-TG mice prematurely exhibited
phenotypes resembling human aging, such as alopecia and skin atrophy. These
phenotypes appeared to be similar to those of laminopathy-based premature aging. We

investigated the development of accelerated aging phenotypes in the GMF-TG mice.



2.2 Materials and Methods

Ethics statement

All of the animal experiments employed in this study were conducted in accordance
with protocols approved by the Ethical Committee of Kobe Women’s University on
Animal Research (Permit Number: 154, 181, 209). All efforts possible were made to

minimize animal suffering.

Production of transgenic mice overexpressing GMF

First, we prepared a construct to create transgenic mice overexpressing GMF
(GMF-TG). The transgene construct was prepared by cloning the coding region of GMF
(97-915 bp) to a pCAGGS vector [50]. The purified construct was used for
microinjection of fertilized oocytes from C57BL6/J mice. The transgenic mice were
established at Oriental BioService (Kyoto, Japan) and maintained on a C57BL6/J
genetic background. The GMF-TG mice were identified by PCR screening.
Animals and diets

C57BL6/J (wild-type) mice were purchased from Crea Japan Inc. (Tokyo, Japan).
The GMF-TG and wild-type male mice were used for the analyses. All of the mice
employed in the study were housed in standard cages with 3-4 mice per cage under
controlled temperature (21 + 2°C) and humidity (50%) conditions, with a 12 h light/dark
cycle. The mice were given free access to tap water and basal diets (CE-2, Crea-Japan

Inc., Tokyo, Japan) throughout the experiments.

The mice were kept until natural death and monitored twice a week for clinical signs,

morbidity or mortality during the experimental period of 155 weeks. The clinical signs



used to assess health and welfare were characterized by obvious symptoms, like the
moribund state, hypokinesia, fever, severe cachexia, loss of body weight, lack of
grooming or nesting, not eating or drinking, alopecia, skin atrophy and spinal curvature
[51,52]. Euthanasia was performed by an inhaled anesthetic overdose, followed by
sevoflurane (Sevofrane, Maruishi Pharma., Osaka, Japan) in order to minimize animal

suffering from distress or pain.

Histological analyses, PCR analyses and Western blot analyses: Tissue samples were
obtained after the euthanasia, which was performed by an overdose of the inhaled

anesthetics sevoflurane.

PCR screening, hair-growth assay and creatinine levels: The experiments were

performed under anesthesia maintained by the inhalation of sevoflurane.
PCR screening

Genomic DNA was extracted from 1-2 mm sections of the tail tip. The DNA was
purified using the Wizard SV Genomic DNA Purification System (Promega, Madison,
WI), according to the manufacturer’s instructions. Briefly, mouse tail was incubated
overnight at 55°C with digestion solution master mix, and then added Wizard SV Lysis
Buffer. Lysate was transferred to the DNA binding column tube by centrifugation at
13,000 xg for 3 min at 25°C. For elution of the DNA, the DNA binding filter column
was added a 250 pl Nuclease-Free Water. The DNA was eluted by centrifugation at
13,000 xg for 1 min at 25°C. The PCR screening was carried out using the T3
(5’-AATTAACCCTCACTAAAGGG-3’) and T7
(5’-GTAATACGACTCACTATAGGGC-3’) primer sequences and TaKaRa Taq

(TaKaRa, Shiga, Japan) under the following conditions: 94°C 90 s (1 cycle); 94°C 60 s,



55°C 60 's, 72°C 90 s (35 cycles) in the GeneAmp PCR System 9700 (Life technologies,
Carlsbad, CA). The PCR primers employed were obtained from Sigma-Aldrich (St.
Louis, MO).
Histological analyses

Mice were sacrificed at 30 weeks for the histological analyses. Tissue sections were
fixed in 10% neutral-buffered formalin solution, paraffin embedded, sectioned, and
stained with hematoxylin-eosin (HE), periodic acid-schiff (PAS) and masson trichrome
(MT), all of which were performed at Applied Medical Research (Osaka, Japan). The
sections were examined using an Olympus BX51 microscope & DP70 digital camera
system (Olympus, Tokyo, Japan).
Hair-growth assay

Employing age-matched mice, dorsal hair was removed by depilatory cream from a
square grid of skin measuring 1.5 cmx1.5 cm. Hair regrowth was scored 15 days later
from digital photographs and a semi-quantitative assessment was done using 6-9 hair
samples/animal. A square measuring 0.5 cmx0.5 cm was also used for the collection of

hair samples.

Creatinine levels

When the mice were 60-80 weeks old, the whole blood samples were collected from
the fasting mice by venipuncture from the caudal vein into syringes without
anticoagulant, and the serum samples were acquired from the whole blood samples. The
serum samples were incubated for 30 min at RT and separated by centrifugation at
3,000 rpm for 15 min at 4°C after cooling with ice. Serum creatinine levels were

measured employing the CRE-EN kit (Kainos, Tokyo, Japan).
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RNA extraction and reverse transcription for PCR analyses

Total mouse tissue RNA was extracted with TRIzol reagent (Life technologies),
according to the manufacturer’s instructions, followed by DNase treatment to eliminate
contaminating genomic DNA. Briefly, mouse tissue was homogenized in 1 mL of
TRIzol reagent. The homogenized sample was added a 200 pl chloroform, and then
centrifuged at 12,000 xg for 15 min at 4°C. The aqueous phase was transferred to a new
tube. The RNA pellet was eluted by centrifugation at 12,000 xg for 10 min at 4°C after
adding a 500 pl 100% isopropanol to the aqueous phase. Total mouse tissue RNA was
prepared by resuspension of the RNA pellet in RNase-free water, and then eliminated

contaminating genomic DNA using Recombinant DNase | (TaKaRa).

Single-stranded DNA was generated from the RNA with random hexamers primers
using the Transcriptor First Strand cDNA synthesis kit (Roche, Mannheim, Germany)
under the following conditions: 65°C 10 min; 25°C 10 min; 55°C 30 min; 85°C 5 min in

the Program Temp Control System PC-708 (ASTEC, Fukuoka, Japan).

Confirmation of gene expression of GMF

Quantitative PCR analyses of the GMF genes were performed with TagMan
Universal PCR Master Mix (Life technologies) and TagMan probe of GMF and mouse
GAPDH under the following conditions: 50°C 2 min (1 cycle); 95°C 10 min (1 cycle);
95°C 15 s, 60°C 1 min (40 cycles) in the 7500 Fast Real-Time PCR System (Life
technologies). The TagMan probe for each GMF and mouse GAPDH employed was
obtained from Life technologies. The expression levels of the GMF mRNA were

normalized to those of the GAPDH mRNA.
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Gene expression of Zmpste24, TGF-B1, CTGF, and p21/wafl

Real-time PCR analyses were performed with SYBR Premix Reagent (TaKaRa)
under the following conditions: 95°C 10 s (1 cycle); 95°C 5 s, 60°C 34 s (40 cycles);
95°C 15 s, 60°C 1 min, 95°C 15 s (1 cycle) in the 7500 Fast Real-Time PCR System
(Life technologies). The following primer pairs were used for real-time PCR analyses:
The GAPDH forward primer sequence 5’-AAATGGTGAAGGTCGGTGTG-3’, and its
reverse primer sequence 5’-TGAAGGGGTCGTTGATGG-3’, The Zmpste24 forward
primer sequence 5’-CCTTCAGCTTCTGGTCAGGACTCTA-3’, and its reverse primer
sequence 5’-CTGGTCCAAAGCCAGCAGAAC-3’, The TGF-pB1 forward primer
sequence 5’ -GTGTGGAGCAACATGTGGAACTCTA-3’, and its reverse primer
sequence 5’-TTGGTTCAGCCACTGCCGTA-3’, The CTGF forward primer sequence
5’-ACCCGAGTTACCAATGACAATACC-3’, and its reverse primer sequence
5’-CCGCAGAACTTAGCCCTGTATG-3’, The p21/wafl forward primer sequence
5’-CTGTCTTGCACTCTGGTGTCTCA-3’, and its reverse primer sequence
5’-CCAATCTGCGCTTGGAGTGA-3’. The PCR primers employed were obtained
from TaKaRa. The expression level of each mRNA was normalized to that of the

corresponding GAPDH mRNA.
Western Blot Analyses

The total protein obtained from each mouse kidney was extracted with RIPA buffer
[53], and protease inhibitor (Roche). A total of 50 ug of each sample was separated by
5-20% polyacrylamide gel and transferred to a nylon membrane (Hybond-P: GE
Healthcare, Buckinghamshire, UK). Blots were blocked with 5% ECL Blocking Agent

(GE Healthcare) in TBS (25 mM Tris, 137 mM NaCl, 2.7 mM KCI, pH 7.4) plus 0.1%

12



Tween 20 (Sigma-Aldrich), and incubated overnight at 4°C with 1/400 anti-Lamin A/C
polyclonal antibody rabbit (Bio Vision, Milpitas, CA), 1/1,000 p21 monoclonal
antibody mouse (#60214-1-1g, Proteintech, Chicago, IL), or 1/4000 alpha actin
polyclonal antibody rabbit (#23660-1-AP, Proteintech). Finally, the blots were incubated
with 1/10,000 HRP-linked anti-rabbit 1gG or anti-mouse IgG (GE Healthcare).
Antibody binding was detected with the ECL Prime chemiluminescence system (GE
Healthcare), with subsequent exposure to LAS-3000 chemiluminescence (GE
Healthcare). The protein expression of p21/wafl was assayed employing the western

blot method and quantified using Image J densitometry software.

Statistical Analyses

The data analyses were performed using the Kaleida Graph software package
(Synergy Software, Tokyo, Japan). Values were expressed as means + S.E. Statistical
analyses for the comparison of two groups were performed using Unpaired Student’s t
test. For the lifespan assessments, data were analyzed employing the Kaplan-Meier
method and log-rank test using StatMate’3 software package (ATMS Inc., Tokyo,

Japan). P values < 0.05 were considered to indicate statistical significance.
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2.3 Results

Transgenic mice overexpressing GMF

It is considered that GMF is normally expressed in the brain in a tissue-specific
manner [4-6]. However, GMF is also induced ectopically in renal proximal tubules by
proteinuria [16,17]. In order to analyze the previously unknown roles of GMF
overexpression in non-brain tissues, we first created the GMF-TG mice, as described in
the ‘Materials and Methods’ section (Figure 5A). We confirmed that the specific
sequence, which was incorporated in a genome, was expressed in the correct direction
in established transgenic lines (data not shown). Next, we conducted quantitative PCR
analyses to confirm the expression of GMF in the GMF-TG mice. In this study, we used
kidney tissue because it has been shown that GMF overexpression was ectopically
induced in kidney tissue by proteinuria [16,17]. The results of the quantitative PCR
analyses, employing mRNA obtained from the kidneys of the wild-type and GMF-TG
mice, showed that GMF mRNA from the GMF-TG mice increased significantly

(approximately 7-fold), compared with the wild-type mice (Figure 5B).

Phenotypes of GMF-TG mice

We bred the GMF-TG mice with the wild-type mice. During the breeding period,
only GMF-TG mice began to show signs of aging in appearance, including hair graying
and lack of hair glossiness, at about the age of 30 weeks (hereafter, 30 weeks, etc.). We

investigated whether the GMF-TG mice would develop features of accelerated aging.

Prematurely aged mice exhibit early aging-like appearance phenotypes, including
increased hair loss, lordokyphosis of the spine, a shortened lifespan and growth

retardation, compared to wild-type mice [54-58]. We monitored the aging-related
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phenotypes of the GMF-TG and wild-type mice during an experimental period of 155
weeks. The GMF-TG mice developed alopecia early, by about 75 weeks, while the
wild-type mice started to show alopecia after about 100 weeks (Figure 6A-B and Table
I1). Some GMF-TG mice also exhibited skin atrophy and spinal curvature. These
phenotypes were not detected in the wild-type mice (Figure 6 and Table II). We also
found that some of the GMF-TG mice died within 60 weeks. The average lifespan of the
GMF-TG mice was about 119 weeks, and that of the wild-type mice was about 126
weeks. Kaplan-Meier representations of the survival curves demonstrated that the
GMF-TG mice died significantly earlier than the wild-type mice (Figure 7). There was
no statistically significant difference in the body weight and size in mature-adult mice

(at about 20 weeks) (data not shown).

Next, we examined aging-related changes in the tissue structure. Degenerative
changes in skin tissue are readily visible, so they can be detected easily [57]. Decreased
hair regrowth has often been reported in prematurely aged mice [55-57]. Because hair
growth assays can be employed to monitor degenerative changes without adversely
affecting the mice, we employed them to investigate the influence of aging on skin
tissue. When dorsal segments of skin were shaved on age-matched mice, the GMF-TG
mice showed sparse hair regrowth after 15-days. In contrast, at the same age, the
wild-type mice displayed robust hair regrowth (Figure 8A-C). The hair regrowth ratio
significantly declined in the GMF-TG mice at 10, 60 and 80 weeks, compared with the
wild-type mice at the same age (Figure 8D). In the kidney, liver, and abdominal aorta at
30 weeks, there were no histologically detectable changes between the GMF-TG and

wild-type mice, as indicated in Figure 9. These results suggested that the GMF-TG mice
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developed mild premature aging phenotypes.

HGPS is associated with premature alopecia, which is one of the well-known
premature-aging syndromes due to laminopathies, seen in humans [44]. Cells and tissue
from HGPS patients exhibited an accumulation of abnormal lamin A (progerin) [46,47].
The phenotypes characterized in the skin of the GMF-TG mice, such as alopecia and
skin atrophy, seemed to be similar to that of laminopathy-based premature aging (Figure
10). Therefore, we hypothesized that an accumulation of abnormal lamin A resulted in
the accelerated aging phenotypes shown in the GMF-TG mice. In order to analyze the
abnormalities of the lamin A in the tissue of the GMF-TG mice, we examined the lamin
A protein in the kidney by western blotting. At 10 weeks of age, no lamin A
abnormalities were exhibited in the kidney of either the GMF-TG or wild-type mice
(Figure 11A). However, at 60 weeks of age, an accumulation of abnormal lamin A
(prelamin A) was detected in the kidneys of the GMF-TG mice, but not in the wild-type
mice (Figure 11B). Next, we evaluated the expression levels of the cleaving enzyme of
prelamin A (Zmpste24) gene in the kidneys by real-time PCR analyses to confirm the
mechanism of the accumulation of prelamin A. At 10 weeks of age, the expression of
Zmpste24 mRNA tended to decrease in the GMF-TG mice (Figure 11C). At 60 weeks of
age, a significant decrease was demonstrated in the expression of Zmpste24 mRNA in
the GMF-TG mice, compared with the wild-type mice at the same age (Figure 11D).
These results demonstrated that the GMF-TG mice exhibited an accumulation of
prelamin A, accompanied by a reduction of Zmpste24 gene expression in the kidney

tissue. On the basis of these results, we investigated the degree of aging in the kidney
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tissue of the GMF-TG mice. In the kidney, aging-associated changes are characterized
by structural changes, including glomerulosclerosis and interstitial fibrosis [59,60], as
well as the decline of renal function [60]. It has been suggested that the transforming
growth factor-B1 (TGF-£1) gene is one of the factors that promote the process of renal
interstitial fibrosis associated with aging [59]. The connective tissue growing factor
(CTGF) gene is known as a downstream mediator of TGF-B1. In order to investigate
age-associated changes in the kidneys, we evaluated the expression levels of the
TGF-p1 and CTGF genes by real-time PCR analyses. In the kidney tissue of the
GMF-TG mice at 10 weeks of age, the expression of TGF-f1 mRNA increased
significantly, compared with the wild-type mice (Figure 12A). However, there was no
statistically significant difference between the expression of CTGF mRNA of the kidney
of the GMF-TG and wild-type mice at 10 weeks of age (Figure 12B). Importantly, in the
GMF-TG mice at 60 weeks of age, the expression of both TGF-f1 and CTGF mRNA in
the kidney increased significantly, compared with that of the wild-type mice (Figure
12C and D). It has been reported that serum creatinine was increased in old mice
compared with young mice, suggesting the decline of renal function with advancing age
[60]. Figure 13 showed that serum creatinine was increased in the old GMF-TG mice
(Average age: 72.8 weeks of age) compared with the old wild-type mice (Average age:
84.8 weeks of age). These results demonstrated that the GMF-TG mice showed
premature-aging phenotypes in the kidney tissue, probably through an accumulation of
prelamin A. These findings suggested that the GMF-TG mice might show a tendency

for laminopathy-based premature aging.
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The mechanisms of laminopathy-based premature aging in the GMF-TG
mice

We attempted to demonstrate the mechanisms of laminopathy-based premature aging
in the GMF-TG mice. It has been suggested that premature aging in laminopathy model
mice is linked to p53 pathway activation [61]. The activated p53 pathway induces
cell/tissue senescence and eventually leads to accelerated aging [23,24]. We examined
whether the expression of p21/wafl gene, a p53 downstream target gene, would increase
in the kidneys of the GMF-TG mice at 10 and 60 weeks of age, and found that the
expression of p2l/wafl mRNA and protein at 10 weeks increased significantly,
compared with the wild-type mice (Figure 14A and C). However, at 60 weeks, a
significant decrease in the expression of p2l/wafl mRNA was demonstrated in the
GMF-TG mice, compared with the wild-type mice at the same age (Figure 14B). There
was no statistically significant difference between protein expression of p21/wafl in the
kidney of the GMF-TG and wild-type mice at 60 weeks (Figure 14C). These results
suggested that the p53 pathway was activated only at an earlier age in the GMF-TG
mice, or that some compensative responses might be activated during a later stage in

these mice.
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2.4 Discussion

In order to examine the roles of GMF overexpression in non-brain tissues in vivo, a
novel line of mice, GMF-TG mice, was established in this study (Figure 5). We first
found that the GMF-TG mice exhibited a premature onset of aging-associated
symptoms seen in physiological human aging, including a lack of hair glossiness, hair
graying, alopecia, skin atrophy, and curvature of the spine (Figure 6 and Table II). We
hypothesized that GMF overexpression in non-brain tissues in vivo might play role in
aging. Our findings demonstrated that the GMF-TG mice had short lifespans (Figure 7)
and showed premature degenerative changes in skin tissue (e.g., reduced hair regrowth)
(Figure 8). However there were no visible age-related histological changes in the kidney,

liver, and abdominal aorta (Figure 9).

Mutations or altered post-translational lamin A processing lead to an accumulation of
lamin A abnormalities, such as progerin or prelamin A [42]. Because these nuclear
intermediate filaments, such as lamin A/C, function as a mesh to protect the nucleus
from mechanical stress, the alteration of lamin A protein causes a loss of nuclear
stability and integrity, manifesting premature-aging syndromes (e.g., HGPS) [40-43].
The GMF-TG mice were characterized by changes in appearance, such as alopecia and
skin atrophy from an earlier stage of life (Figure 6 and Table II). In appearance, these
phenotypes were similar to those seen in laminopathy-based premature aging (Figure
10). In this study, we investigated whether or not the accelerated aging phenotypes that
were observed in the GMF-TG mice were associated with laminopathies. First, we
found that the GMF-TG mice accumulated an abnormal lamin A (prelamin A) with age

in the kidney tissue (Figure 11A and B). Second, we demonstrated that the GMF-TG
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mice showed a reduced expression of the cleaving enzyme of prelamin A (Zmpste24) in
the kidney tissue, from an earlier stage of life (Figure 11C and D), suggesting that the
GMF-TG mice would probably be affected by secondary laminopathy [42] due to an
accumulation of prelamin A, accompanied by a reduction in the expression of Zmpste24.
Finally, we confirmed the increased TGF-£1 and CTGF gene expression and the decline
of renal function (e.g. increased serum creatinine) (Figure 12-13). The GMF-TG mice
exhibited premature-aging phenotypes in the kidney tissue. The results of the present
study suggest that the GMF-TG mice might develop accelerated aging phenotypes due

to secondary laminopathy.

As animal models employed in studies on secondary laminopathies,
Zmpste24-knockout mice (Zmpste24-/- mice) are well-known [62]. Zmpste24-/- mice
exclusively produce prelamin A as a consequence of Zmpste24 deficiency [62]. These
mice exhibit severe phenotypes consistent with human laminopathies (e.g. HGPS and
restrictive dermopathy), including growth retardation, jaw and bone abnormalities,
alopecia and shorter lifespan [62]. Intriguingly, the GMF-TG mice exhibited phenotypes
without the severe ones, such as growth retardation or extremely short lifespan during
the study (Figure 6-7 and Table I1). Comparing to secondary laminopathies caused by
genetic mutation, the severity of the phenotypes observed in the GMF-TG mice was
very mild. In regard to the contribution of prelamin A accumulation to the pathological
aging phenotypes, several studies were conducted using Zmpste24-/- mice and
Zmpste24-/- Lmna+/- mice [61,63]. The accumulation levels of prelamin A of the

Zmpste24-/- Lmna+/- mice were significantly reduced, compared to that of Zmpste24-/-

20



mice [61,63]. In response to this prelamin A reduction, the phenotypes observed in the
Zmpste24-/- mice were largely rescued in the Zmpste24-/- Lmna+/- mice [61,63].
Moreover, there were no differences shown in the body size, weight or lifespan between
the Zmpste24-/- Lmna+/- mice and the wild-type mice during the studies [61]. These
results suggested that the levels of accumulation of prelamin A might at least partially
contribute to the phenotypes seen in the Zmpste24-/- mice, but that is not only the
critical determinant for the aging phenotype and the precise underlying pathogenic
mechanisms still need to be explored [61,63]. We detected an accumulation of prelamin
A only in the old GMF-TG mice (Figure 11A and B). The young GMF-TG mice tended
to show a reduced expression of the Zmpste24 gene (Figure 11C). It is conceivable that
the amount of prelamin A in the GMF-TG mice might be less than that found in the
mouse models employed for secondary laminopathies. Here, we propose that the
characteristic of the mild phenotypes shown in the GMF-TG mice might be because of
the slowly increased pattern of expression time course and/or the expression amount of

prelamin A.

Several studies showed that the presence of lamin A abnormalities, such as progerin
or prelamin A, was detected in normal human aging [46-49]. Furthermore, an
accumulation of prelamin A in healthy aging was associated with the down-regulation
of Zmpste24 [48,49]. However, at present, the molecular mechanisms that regulate the
expression of Zmpste24 have not been fully clarified. Recent studies showed that the
gene expression of Zmpste24 was reduced in response to oxidative stress [48,49]. Here,

we can speculate that the induction of GMF in non-brain tissues might cause an
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oxidative stress-related reduction of Zmpste24, presumably due to its vulnerability to
oxidative stress [18]. We believe that GMF overexpression in local tissue might
contribute to the promotion of the local aging process by causing secondary
laminopathy. GMF is ectopically induced by proteinuria in renal tubules [16,17]. CKD
associated with proteinuria might accelerate the regular aging process in kidney tissue
and also enhance the progression of CKD, which consequently might have an impact on
systemic pathological changes, including organismal aging, cardiovascular damage and

inflammatory changes.

Several in vivo studies have demonstrated that senescent cells accumulate with age
[23]. Senescence is considered to be related to organismal aging, through the disruption
of tissue functions [23,24,64,65]. Senescence is regulated by the p53 or p16-Rb pathway,
both of which are activated in the presence of oxidative stress [23,24]. Some studies
have demonstrated that an accumulation of prelamin A induces a significant increase in
senescence-associated biomarkers, such as SA-B-gal staining [48,61]. This suggests that
the reduction of Zmpste24 levels and the accumulation of prelamin A might be linked to
the activation of the p53 pathway [61], leading to senescence and premature aging
[23,24]. On the other hand, Kudlow et al. [66] reported that the expression of p53 target
genes was not highly up-regulated in laminopathy cases. Varela et al. [61] examined
whether or not the absence of p53 could result in a recovery of the premature-aging
phenotypes that were observed in the laminopathy model mice. Zmpste24-/- p53-/- mice
exhibit a gain in weight and an increased lifespan, compared with Zmpste24-/- mice

[61]. The expression of p53 target genes, such as the p2l/wafl gene, decreased in
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Zmpste24-/- p53-/- mice, compared with age-matched Zmpste24-/- mice [61]. In
Zmpste24-/- p53-/- mice, the phenotypes seen in the Zmpste24-/- mice were partially
improved by the absence of the p53 gene [61]. These findings indicate that the
activation of the p53 pathway might play a role in the progression of aging in

laminopathy cases.

In the present study, the expression of p21/wafl mRNA and protein increased in the
GMF-TG mice at 10 weeks of age (Figure 14A and C), suggesting that premature aging
in the young GMF-TG mice might be associated with the p53 pathway. To our surprise,
the GMF-TG mice showed a reduced expression of p21/wafl mRNA at 60 weeks of age
(Figure 14B). There was no change in the expression of the p21/wafl protein (Figure
14C). Because the p21/wafl is a key mediator of the p53-dependent cell cycle arrest and
senescence process, the expression of p2l/wafl is exquisitely regulated by
transcriptional, post-transcriptional and post-translational mechanisms [67]. We can
speculate that the regulatory factors of the p21/wafl might be influential in the old
GMF-TG mice in order to modulate p53-dependent senescence. For example, the p400
E1A-associated protein, which inhibits p53-dependent p21/wafl transcription [68],
modulates cell fate decisions (cell cycle progression, apoptosis, or senescence) by the
ROS homeostasis [69]. It is conceivable that the up-regulation of p400 might be
induced in the later age of GMF-TG mice in order to modulate increased oxidative
stress caused by the overexpressed GMF in non-brain cells [18]. Further studies are

required to elucidate these issues.

In summary, we demonstrated that the GMF-TG mice showed very mild accelerated
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aging phenotypes, due to secondary laminopathy. In regard to the mechanisms involved
in this process, we propose that the ectopic GMF overexpression induces an oxidative
stress-related reduction of Zmpste24. This might be associated with the activation of the

p53 signaling-pathway, leading to senescence in cells and tissues.
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Chapter 3.

Concluding remarks

Lamin A, a component of the nuclear lamina, is spliced products of the LMNA gene
that is synthesized as a precursor prelamin A [39,42]. Zmpste24, a zinc
metalloproteinase, is involved in the maturation of lamin A [39,42]. Mutations in the
LMNA or Zmpste24 gene produce mutant lamin A proteins, such as progerin or prelamin
A, respectively [42]. The abnormal lamin A has been identified as the cause of
laminopathies which are characterized by premature aging [42]. Interestingly, the
Zmpste24 gene expression has been shown to be decreased in response to oxidative
stress [48,49]. It suggests that the prelamin A accumulation might be not only caused by

genetic mutation, but also by stress signals, such as oxidative stress.

In this study, we identified an accumulation of prelamin A in the GMF-TG mice. It
suggests that accelerated aging phenotypes in the GMF-TG mice might be associated
with secondary laminopathy, caused by Zmpste24 down-regulation. We propose that
GMF overexpression in non-brain tissues could cause down-regulation of Zmpste24
MRNA by through enhancing oxidative injuries due to its vulnerability to oxidative
stress (Figure 15) [18]. It is generally recognized that oxidative stress is one of the
major factors that promote the aging process in organisms [23,24]. The novel premature
aging model mice, the GMF-TG mice, may be useful to understanding molecular

mechanisms of aging, and then applicable to anti-aging study.
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Figure 1. The expression of GMF mRNA in rat organs at 3 months of age [6].

The expression of glia maturation factor-p (GMF) is predominantly expressed in the

40 fold less than that in the brain.

levels of GMF mRNA 10-

nervous system. Low
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Figure 2. Schematic representation of the effect of GMF overexpression on

non-brain cells [18].

GMF overexpression in non-brain cells causes an increase in the activity of the
H.O,-producing enzyme; copper/zinc-superoxide dismutase (CuZnSOD), a decrease in
the activities of the H,O,-reducing enzymes; catalase (CAT) and glutathione peroxidase
(GPx), and a depletion of the content of the cellular glutathione peroxidase substrate
glutathione (GSH) through the p38-MAPK. It promotes a sustained increase in

intracellular H,O,, leading to F-actin reorganization and apoptosis.
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(Modified from Poljsak et al., Oxid Med Cell Longev, 2013, Figure2 and Scheme2)

Figure 3. The illustration of relationship between ROS production and the cellular
antioxidant defense system and the effects of oxidative stress [21].

Reactive oxygen species (ROS) including singlet oxygen (*O,), hydrogen peroxide
(H20,), superoxide anion radical (O2-) and hydroxyl radical (-OH) are a byproduct of
the normal metabolism of oxygen [20,22]. Oxidative stress results from an imbalance
between ROS production and the cellular antioxidant defense system, such as
superoxide dismutase (SOD), CAT, GPx and GSH [20,21]. Oxidative stress induces
oxidative damage to proteins, lipids and DNA, resulting in apoptosis, cellular

senescence and aging [21,23,24].

28



brain tissue

/ GMF overexpression Astrocyte\

p38-MAPK activation

\

NF-kB activation & translocation

\

GM-CSF induction

\

Pro inflammatory cytokine induction = Microglia
(e.g. TNF-a, IL-1p, IL-6)

v

K Death of neuronal cells /

(Modified from Zaherr et al., J. Neurochem., 2007, Figure10 )

Figure 4. Hypothetical sequence of events following GMF overexpression in brain
tissue by Zaheer et al. [4].

GMF overexpression in brain tissue leads to induction of granulocyte-macrophage
colony-stimulating factor (GM-CSF) through p38-MAPK and NF-kB-mediated
pathway. GMF-dependent induction of GM-CSF activates microglia to produce TNF-a.,

IL-1B, IL-6, and IP-10 and that finally results in the death of neuronal cells.
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Figure 5. Preparation of transgenic mice overexpressing GMF (GMF-TG).

(A) This figure shows the construct used to prepare the transgenic mice. The construct
was prepared by cloning the coding region of GMF (97-915 bp) in a pCAGGS vector.
(B) This figure shows that the gene expression of GMF in the kidney of the GMF-TG
mice was significantly higher (about 7-fold) than that of C57BL6/J (WT) mice. The data

is shown as means + S.E. (WT; n=3, GMF-TG; n=3). "; P < 0.05 vs. WT mice.
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Figure 6. Photograph of WT and GMF-TG mice.

(A-B) These photographs show the representative appearance of the WT (A) and
GMF-TG (B) mice at 80 weeks, respectively. The GMF-TG mice showed alopecia and
skin atrophy. These phenotypes were not detected in the aged-matched WT mice. (C-D)
Indicators of aging phenotypes, such as spinal curvature, were detected in the GMF-TG

(D) mice, but not in the WT (C) mice at 110 weeks.
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Figure 7. Kaplan-Meier graph of WT and GMF-TG mice.

This figure shows a Kaplan-Meier representation of the survival curves, which revealed
that the GMF-TG mice died significantly earlier than the WT mice. The GMF-TG
mouse and the two WT mice were alive when the data analysis was performed. None of
the mice exhibited any signs of distress or pain due to the clinical symptoms used to
assess health and welfare. (WT; n=41, GMF-TG; n=97). *P < 0.05 GMF-TG mice vs.

WT mice.

32



D Oowr
B GMF-TG

* x¥k *%

1.0

0.5 A ‘ | |
(1} r
60w

10w

hair regrowth ratio

80w

Figure 8. Hair regrowth phenotypes in WT and GMF-TG mice.

(A-C) These photographs show the representative appearance of the WT (A-C; Left)
and GMF-TG (A-C; Right) mice at 10 (A), 60 (B) and 80 (C) weeks, 15 days after
shaving. Almost no hair regrowth was observed in the GMF-TG mice, whereas the WT
mice displayed robust hair regrowth. (D) The figure shows the results for the hair
regrowth ratio in the WT and GMF-TG mice at 10, 60 and 80 weeks, 15 days after
shaving. The hair regrowth ratio for the GMF-TG mice declined significantly, compared
with the WT mice at the same age. The mean of the hair regrowth results for the 10w
WT mice is shown as 1. The data is shown as means £ S.E. (10, 60, 80w WT; n=3, 10w
GMF-TG; n=6, 60, 80w GMF-TG; n=5). *; P <.0005 GMF-TG mice vs. WT mice. **;

P <.0001 GMF-TG mice vs. WT mice
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Figure 9. Histological appearance of the kidney, liver and abdominal aorta in WT

and GMF-TG mice.



(A-F) These photographs show an overview of the hematoxylin-eosin (HE) (A and D),
periodic acid-schiff (PAS) (B and E), and Masson trichrome (MTC) (C and F) stained
kidney sections in the WT (A-C) and GMF-TG (D-F) mice at 30 weeks. (G-L) These
photographs show an overview of the HE (G and J), PAS (H and K), and MTC (I and L)
stained liver sections in the WT (G-1) and GMF-TG (J-L) mice at 30 weeks. (M-R)
These photographs show an overview of the HE (M and P), PAS (N and Q), and MTC
(O and R) stained abdominal aorta sections in the WT (M-0O) and GMF-TG (P-R) mice
at 30 weeks. These findings revealed no histological differences between the WT and

GMF-TG mice. Magnifications: x100, Scale Bar = 200 pum.

35



(Mounkes et al., Nature, 2003, Figure 1a)  (Bergo et al., PNAS, 2002, Figure 4)

Figure 10. Photograph of mouse models of laminopathies [54,70] and GMF-TG
mice.

(A) This photograph shows the representative appearance of mouse models of
laminopathies, Lmna “*%/=3% mice (Right) and wild-type mice (Left) [54]. (B) This
photograph shows the representative appearance of mouse models of laminopathies,
Zmpste24-/- mice [70]. (C) This photograph shows the representative appearance of the
GMF-TG mice at 80 weeks. The appearance of the GMF-TG mice, such as alopecia and

skin atrophy, seemed to be similar to that of mouse models of laminopathies.
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Figure 11. Western blot of lamin A/C and the expression of Zmpste24 in WT and
GMF-TG mice.

(A-B) These figures show the results from western blot analyses of the lamin A/C
protein in the kidney of the WT and GMF-TG mice at 10 and 60 weeks. Prelamin A was
absent in the WT mice at 10 and 60 weeks (A-B; Left) and the GMF-TG mice at 10
weeks (A; Right), but it was detectable in the GMF-TG mice at 60 weeks (B; Right).
There were no significant differences between the lamin C protein levels in the WT and
GMF-TG mice, confirming equal loading. (C) The expression of Zmpste24 mRNA
tended to decrease in the kidneys of the GMF-TG mice at 10 weeks, compared with the

WT mice. The data is shown as means £ S.E. (10w WT; n=3, 10w GMF-TG; n=3). P <
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0.09 vs. 10w WT mice. (D) The expression of Zmpste24 mRNA decreased in the
kidneys of the GMF-TG mice at 60 weeks, compared with the WT mice. The data is
shown as means + S.E. (60w WT; n=4, 60w GMF-TG; n=4). *; P < 0.01 vs. 60w WT

mice.
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Figure 12. The expression of TGF-B1 and CTGF in WT and GMF-TG mice.

(A-B) The expression of transforming growth factor-p1 (TGF-B1) (A) mRNA increased
in the kidneys of the GMF-TG mice at 10 weeks, compared with the WT mice.
However, no significant differences were shown in the expression of connective tissue
growing factor (CTGF) (B) mRNA in the kidney of the GMF-TG mice at 10 weeks,
compared with the WT mice. TGF-B1; The data is shown as means £ S.E. (10w WT;
n=4, 10w GMF-TG; n=5). CTGF; The data is shown as means + S.E. (10w WT; n=3,
10w GMF-TG; n=4). *; P < 0.01 vs. 10w WT mice. N.S.; not significant versus 10w
WT mice. (C-D) These figures demonstrated a significant increase in TGF-1 (C) and
CTGF (D) mRNA in the kidneys of the GMF-TG mice at 60 weeks, compared with the
WT mice at the same age. The data is shown as means + S.E. (60w WT; n=4, 60w

GMF-TG; n=4. *; P < 0.05 vs. 60w WT mice. **; P < 0.001 vs. 60w WT mice.
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Figure 13. The serum creatinine levels in WT and GMF-TG mice.

This figure shows the result of the serum creatinine levels in the WT and GMF-TG mice,
which revealed that serum creatinine was increased in the GMF-TG mice, compared
with the WT mice. The data is shown as means = S.E. (WT; n=4, average age; 84.8

0.25 weeks, GMF-TG; n=4 average age; 72.8 + 6.24 weeks). *; P < 0.05 vs. WT mice.
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Figure 14. The expression of p2l/wafl mRNA and protein in WT and GMF-TG
mice.

(A) The expression of p21/wafl mRNA increased in the kidneys of the GMF-TG mice
at 10 weeks, compared with the WT mice. The data is shown as means £ S.E. (10w WT;
n=3, 10w GMF-TG; n=4). *; P <0.05 vs. 10w WT mice. (B) In the kidneys at 60 weeks,
the expression of p2l/wafl mRNA in the GMF-TG mice was reduced significantly,

compared to that of the WT mice at the same age. The data is shown as means + S.E.

41



(60w WT; n=4, 60w GMF-TG; n=4). **; P < 0.01 vs. 60 w WT mice. (C) This figure
shows the results from western blot analyses of the p21/wafl protein in the kidney of
the WT and GMF-TG mice at 10 and 60 weeks. The data shown is representative data
on the estimated ratios of p21/wafl to a-actin, in the case of equivalent protein loading
within a gel. Increased p21/wafl protein levels were detected in the GMF-TG mice at
10 weeks, compared with the WT mice. However, there was no difference in the levels
of p21/wafl protein between the GMF-TG and WT mice at 60 weeks. The data is
shown as means = S.E. (10, 60w WT; n=3, 10, 60w GMF-TG; n=3). *; P < 0.05 vs. 10w

WT mice. N.S.; not significant versus 60w WT mice.
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Figure 15. Hypothetical schematic representation of the novel role of GMF

overexpression in non-brain tissues in vivo.

This study showed that the GMF-TG mice developed very mild accelerated aging
phenotypes due to lamin injury caused by Zmpste24 down-regulation. Zmpste24 is
down-regulated in response to oxidative stress [48,49], which appears to be associated
with the activation of p53 and p16-Rb pathways [48]. Oxidative stress activates the p53
and p16-Rb pathways, inducing senescence and eventually leading to accelerated aging
[23,24]. It is conceivable that the ectopic GMF overexpression might be a factor

connecting aging and lamin injury through oxidative stress.
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Table I. Definition of chronic kidney disease [25].

Chronic kidney disease is diagnosed according to the criteria listed as follows.

Criteria for chronic kidney disease (CKD): (either of the following present for > 3 months)

Markers of kidney damage  Albuminuria
(one or more)  (albumin excretion rate (AER) > 30mg/24 hours;
albumin creatinine ratio (ACR) > 30 mg/g [ > 3 mg/mmol])

Urine sediment abnormalities

Electrolyte and other abnormalities due to tubular disorders
Abnormalities detected by histology

Structural abnormalities detected by imaging

History of kidney transplantation

Decreased glomerular . ) .
filtration rate (GFR) GFR < 60 mL/min/1.73 m* (GFR categories G3a—G5)

(Chapterl: Definition and classification CKD, Kidney Int suppl, 2013, p5)
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Table I1. Phenotypes seen in the appearance of WT and GMF-TG mice during the

experimental period of 155 weeks.

Alopecia Skin atrophy Spinal curvature
GMF-TG n=17 n=9 n=9
(n=97) (18%) 9%) 9%)
WT n=6 n=0 n=0
(n=41) (15%) (0%) (0%)

There were no detectable differences in body size, jaws or limbs between the WT and

GMF-TG mice during the study.
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